A divide and conquer approach to computing the mean first passage matrix for Markov chains via Perron complement reductions

نویسندگان

  • Stephen J. Kirkland
  • Michael Neumann
  • Jianhong Xu
چکیده

Let MT be the mean 3rst passage matrix for an n-state ergodic Markov chain with a transition matrix T . We partition T as a 2× 2 block matrix and show how to reconstruct MT e@ciently by using the blocks of T and the mean 3rst passage matrices associated with the non-overlapping Perron complements of T . We present a schematic diagram showing how this method for computing MT can be implemented in parallel. We analyse the asymptotic number of multiplication operations necessary to compute MT by our method and show that, for large size problems, the number of multiplications is reduced by about 1=8, even if the algorithm is implemented in serial. We present 3ve examples of moderate sizes (of orders 20–200) and give the reduction in the total number of Cops (as opposed to multiplications) in the computation of MT . The examples show that when the diagonal blocks in the partitioning of T are of equal size, the reduction in the number of Cops can be much better than 1=8. Copyright ? 2001 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela a Note on Generalized Perron Complements of Z-matrices∗

The concept of the Perron complement of a nonnegative and irreducible matrix was introduced by Meyer in 1989 and it was used to construct an algorithm for computing the stationary distribution vector for Markov chains. Here properties of the generalized Perron complement of an n×n irreducible Z-matrixK are considered. First the result that the generalized Perron complements of K are irreducible...

متن کامل

A note on generalized Perron complements of Z-matrices

The concept of the Perron complement of a nonnegative and irreducible matrix was introduced by Meyer in 1989 and it was used to construct an algorithm for computing the stationary distribution vector for Markov chains. Here properties of the generalized Perron complement of an n×n irreducible Z-matrixK are considered. First the result that the generalized Perron complements of K are irreducible...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Free Vibration Analysis of Repetitive Structures using Decomposition, and Divide-Conquer Methods

This paper consists of three sections. In the first section an efficient method is used for decomposition of the canonical matrices associated with repetitive structures. to this end, cylindrical coordinate system, as well as a special numbering scheme were employed. In the second section, divide and conquer method have been used for eigensolution of these structures, where the matrices are in ...

متن کامل

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2001